Maths for Computing Tutorial 3

- 1. Show that the following arguments are valid. (Write all the steps with reasons.)
 - a) Premises: $p \to q$, $(q \lor r) \land (\neg (q \land r))$. Conclusion: $\neg q \to (\neg p \land r)$.
 - b) Premises: $\forall x (P(x) \lor Q(x)), \ \forall x (\neg Q(x) \lor S(x)), \ \forall x (R(x) \to \neg S(x)), \ \text{and} \ \exists x \neg P(x)$ Conclusion: $\exists x \neg R(x)$. (Domain for all quantifiers are the same.)
- 2. Find the flaw in the below proof that shows that if $\exists x P(x) \land \exists x Q(x)$ is true, then $\exists x (P(x) \land Q(x))$ is true.

1. $\exists x P(x) \land \exists x Q(x)$	Premise
$2. \ \exists x P(x)$	Simplification of 1
3. $\exists x Q(x)$	Simplification of 1
4. P(c)	Existential instantiation from 2
5. $Q(c)$	Existential instantiation from 3
6. $P(c) \wedge Q(c)$	Conjunction from 4 and 5
7. $\exists x (P(x) \land Q(x))$	Existential Generalization

- 3. Suppose an argument *A* has premises *p*, *q*, and *r*, where each premise can be a compound proposition, and conclusion *s*, where *s* can be a compound proposition too. Show that the argument *A* is valid if and only if $(p \land q \land r) \rightarrow s$ is a tautology.
- 4. Prove the following:
 - a) If n is an integer and 3n + 2 is odd, then n is odd.
 - b) If x is irrational, then 1/x is irrational.